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1. Introduction

One hundred and fifty years ago Mendeleev published [4] the first version of our modern
periodic table. He ordered the sixty-three known elements by atomic mass and organized
them into rows and columns, leaving gaps for as-yet-to-be-discovered elements (see Figure
1).

This first attempt at classifying and categorizing the basic building blocks of our universe
inspired generations of scientists and is one of the major scientific accomplishments of the
modern era.1 These days we order the one hundred and eighteen known elements by the
number of protons in their nucleus which uniquely determines them, and is closely related
to their atomic mass. We also organize them in rows (periods) and columns (groups) corre-
sponding to the number of electron shells and by chemical properties, much like Mendeleev’s
table. Although it is not known if there are more that one hundred and eighteen elements,
the periodic table of 2019 does have a refreshingly complete look to it!

More than two millennia before Mendeleev, Plato and Aristotle had been thinking about
the elements too–they postulated five: fire, earth, air, water and æther. This last element
was a bit speculative, but they provided a compelling argument for its existence: there
are five platonic solids: the tetrahedron, cube, octahedron, icosahedron and dodecahedron.
Although they were somewhat naive on a few points, we can find inspiration in these ancient
Greeks’ ideas: symmetry can be very useful for classification! Indeed, periodic tables these
days often include symmetry information on the crystal structure of the elements when they
organize themselves into molecules. Diamond (everyone’s favorite allotrope of carbon) has
48 symmetries that fix a point. More generally, all solid crystals can be categorized by their
space groups, of which there are exactly 230. We can also appreciate the Platonic approach
to classification: reduce a scientific question (how many elements are there? ) to a geometric
question (how many regular convex polyhedra are there? ) which then can be answered using
algebra/number theory (Ask Theaetetus! 2).

Date: July 8, 2019.
1The United Nations General Assembly and UNESCO designated 2019 as the International Year of the

Periodic Table of Chemical Elements.
2Probably he used the fact that the sum of the angles at a vertex consisting of k n-gons must satisfy

n−2
n kπ < 2π, as is found in Euclid’s Elements book XIII.
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Figure 1. Mendeleev’s 1869 Periodic Table

Quantum mechanics allows for a more detailed classification of the matter that make up
our universe. These elementary particles, e.g., quarks, photons, neutrinos etc., come in two
different types: fermions and bosons. They are distinguished by a different kind of symmetry
called spin statistics. This refers to their behavior when two identical particle types switch
places: the wave function for fermions acquires a sign, while the wave function of two bosons
is unchanged. Fierz and Pauli showed that for point-like particles in 3 spacial dimensions
only bosons and fermions are possible. Mathematically, this is manifested in the triviality
of the fundamental group of R3 with a finite set of points deleted.

What can happen in 2 spacial dimensions? This may seem like an academic question–
after all, our universe has 3 spacial dimensions. However, since the 1970s the study of
physical systems at near absolute zero allow for states of matter, in which the particles
are effectively confined to 2 dimensions due to energy constraints. In 2016 the Nobel Prize
for Physics was awarded to Thouless, Kosterlitz and Haldane for their pioneering work on
topological phases of matter (TPMs) which could support (quasi-)particles that are neither
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bosons or fermions, but rather anyons. The exchange of two identical anyons can introduce
a scale factor θ = e2πir to the wave function, where r can be any rational number r ∈ Q.
Mathematically, there are no constraints on how many different types of anyons that can
exist, in contrast to the 3 dimensional boson/fermion dichotomy. Indeed, the fundamental
group of a disk with n points removed is as big as possible: the free group on n symbols.
If 3 ore more anyons are present in an anyonic system then it is even possible that the
wave function lives in a high-dimensional vector space, and could have non-abelian braiding
statistics! The possibility of building quantum computers that were topologically protected
against decoherence based on anyons was initiated by Freedman and Kitaev in the late 90s
and is currently being explored.

How can we classify topological phases of matter? How many are there? What are some
ways of distinguishing them from each other? Is there a “periodic table” of topological
phases of matter? Around 2003 it was realized that very promising mathematical models
for topological phases are modular tensor categories (MTCs). These had been studied for a
decade or so, going back to the work of Moore and Seiberg in Conformal Field Theory and
Turaev’s approach to Quantum Topology in the early 1990s. These are elegant algebraic
structures consisting of a finite number of isomorphism classes of simple objects and maps
between them that amazingly interact in a way similar to those expected of anyons. For
example, the tensor product of objects X and Y corresponds to the fusion of anyons, denoted
X ⊗ Y , and the direct sum X ⊕ Y is related to the superposition principle. Crucially, an
MTC comes with braiding maps cX,Y : X⊗Y → Y ⊗X, that describe the braiding statistics.
The possibility of anyons existing in topologically more interesting surfaces, e.g. a torus,
can also be modeled by the rich structure of MTCs. The relationship between MTCs and
topological phases of matter is so close that a pocket dictionary (see [7, Table 1]) can be
made to facilitate discussions between mathematicians and condensed matter physicists. For
example, the “neutral” or trivial anyon type representing the vacuum corresponds to the
tensor unit object 1, and the anti-particle type of X correspond to the dual object X∗.

Each anyonic system harbors a finite number of distinguishable anyon types. A given
configuration may have an arbitrary number of such anyons, but their types must be chosen
from among a fixed finite collection (including the vacuum). This is encoded in the rank r
of the modeling MTC C, i.e., the number of (isomorphism classes of) simple objects. Rank
seems like a useful parameter for labeling the rows of a hypothetical periodic table of TPMs,
and in 2003 Wang suggested that each such row would have finite length–the Rank-Finiteness
conjecture. The evidence from 3 dimensions where only bosons and fermions are possible
could easily mislead us: lowering dimension can play havoc on your intuition! Indeed, we
have already seen through the fundamental group that points in 3 dimensions are much less
complicated than points in 2 dimensions. Notice also that while there are 5 regular convex
polyhedra, there are infinitely many regular convex polygons!

The authors met for the first time as a group at the AIM Workshop “Classifying Fusion
Categories” and began a joint project with the modest goal of classifying rank 5 MTCs. A
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few months in it was realized that a proof of the rank-finiteness conjecture was within reach!
The idea of the proof goes as follows:

Having successfully reduced the scientific question (Are there finitely many TPMs with
a given fixed number of anyon types?”) to a mathematical conjecture, we need to reduce
it further to a tractable number theoretical question. One approach is to consider the
dimensions dX of the simple objects X. These are not ordinary integer dimensions d ∈ Z
as a vector space has–instead they are (real) algebraic integers: numbers x satisfying a
monic polynomial xn + an−1x

n−1 + · · · + a0 with the ai ∈ Z. Actually they are slightly
nicer cyclotomic integers that can be expressed as sums and products of roots of unity
such as e2πi/`. The dX behave in a way that justifies calling them dimensions: they are
multiplicative with respect to ⊗ and additive with respect to ⊕, and are asymptotically
equal to the dimension of the state space of n anyons in a disk. We can define the global
dimension of the rank r MTC C by the equation:

dim(C) = 1 + d21 + · · · d2r−1 (1)

where the di are the dimensions of the distinct isomorphism classes of simple objects in
C. This equation is inspired by finite groups: for a finite group G one can prove that
|G| =

∑
V ∈Irr(G)(dim(V ))2, where Irr(G) is the set of (isomorphism classes of) irreducible

matrix representations over the complex numbers C. Eq. (1) plays a starring role in the
proof of rank-finiteness. A result known as Ocneanu rigidity (see [2]) can be used to reduce
the question of rank-finiteness to showing that eq. (1) has finitely many solutions when the
di and and dim(C) correspond to a rank r MTC.

Eq. (1) is a generalized version of a Diophantine equation: a polynomial equation whose
integer-valued solutions are sought. A famous family of Diophantine equations is an+bn = cn

for n ≥ 2. For n = 2 there are infinitely many solutions, whereas Wiles’ Theorem tells us
that for n ≥ 3 there are no solutions. In our case we are looking for solutions in the larger
ring of algebraic integers. Without using further properties of MTCs we are immediately
stuck: Y = 1 +X2

1 + · · ·+X2
r−1 clearly has infinitely many integer solutions, not to mention

the algebraic integer solutions! Let us take a look at the old problem of classifying primitive
Pythagorean triples: (a, b, c) ∈ Z3 where a2 + b2 = c2 where a, b and c have no common
divisors. Euclid showed that all primitive solutions are of the form (m2− n2, 2mn,m2 + n2)
where m and n share no common divisors and are not both odd, up to switching a and b.
What if we added a hypothesis that any prime dividing a, b or c must come from a finite
collection of primes {p1, . . . , pk}? It is a highly non-trivial fact that, under this restriction,
there are only finitely many solutions! This is a highly non-trivial result in analytic number
theory, which has been generalized to algebraic integers [3].

This reduces the problem of proving rank-finiteness to showing that, for a fixed r, the
set of primes that can divide the algebraic integer dim(C) coming from all rank r MTCs C
is finite. Here “prime” and “divides” are interpreted in the ring theory sense of ideals. To
achieve this we first bound the Frobenius-Schur exponent FSexp(C) in terms of the rank r:
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this is an integer invariant akin to the exponent of a finite group, i.e., the LCM of the orders
of all of the elements of G. Bounding FSexp(C) is an application of Galois theory, found
in [5], and it follows that there are only finitely many primes dividing FSexp(C). Finally,
one shows that the set of primes dividing dim(C) coincides with the set of primes dividing
FSexp(C): this is a categorical version of Lagrange’s and Cauchy’s theorems from group
theory: the set of primes dividing |G| is equal to the set of primes appearing as orders of
elements of G.

Rank-finiteness for MTCs is yet another example of our infinite universe having a beauti-
fully ordered nature when viewed in the light of mathematics. From another point of view,
our universe inspires the development of deep mathematics.
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